Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Brain Behav Immun ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia more than of other cell types are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD at a population level.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38509405

RESUMO

Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).

3.
Nat Commun ; 15(1): 1205, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350995

RESUMO

Tangential growth of the human cerebral cortex is driven by cell proliferation during the first and second trimester of pregnancy. Fetal growth peaks in mid-gestation. Here, we explore how genes associated with fetal growth relate to cortical growth. We find that both maternal and fetal genetic variants associated with higher birthweight predict larger cortical surface area. The relative dominance of the maternal vs. fetal variants in these associations show striking variations across birth years (1943 to 1966). The birth-year patterns vary as a function of the epigenetic status near genes differentially methylated in individuals exposed (or not) to famine during the Dutch Winter of 1944/1945. Thus, it appears that the two sets of molecular processes contribute to early cortical development to a different degree in times of food scarcity or its abundance.


Assuntos
Desenvolvimento Fetal , Cuidado Pré-Natal , Gravidez , Feminino , Humanos , Peso ao Nascer , Desenvolvimento Fetal/genética , Família
4.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076919

RESUMO

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

5.
Diabetes Care ; 46(12): 2267-2272, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824790

RESUMO

OBJECTIVE: To investigate the relationship between blood glycated hemoglobin (HbA1c) and cerebral cortical thickness (CT) and identify potential cellular mechanisms involved. RESEARCH DESIGN AND METHODS: A cohort of 30,579 adults age 45 to 81 (mean ± SD: 64 ± 7.5) years with available data on brain MRI and blood HbA1c levels was analyzed. The relationship between HbA1c and CT was probed using independent spatial profiles of cell-specific gene expression. Lastly, a genome-wide association study was conducted on the shared variance between HbA1c and CT. RESULTS: The HbA1c-CT association was noncontinuous, emerging negatively within the prediabetic range (39.6 mmol/mol). This association was strongest in brain regions with higher expression of genes specific to excitatory neurons and lower expression of genes specific to astrocytes and microglia. A significant locus implicated mitochondrial maintenance and ATP generation. CONCLUSIONS: Effective glycemia control at prediabetic levels is warranted to preserve brain health and prevent prediabetes-related neurobiologic perturbations.


Assuntos
Estado Pré-Diabético , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estado Pré-Diabético/genética , Hemoglobinas Glicadas , Glicemia/metabolismo , Estudo de Associação Genômica Ampla , Neurobiologia , Atrofia
6.
Front Endocrinol (Lausanne) ; 14: 1171244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484955

RESUMO

Background: Obesity has been associated with depressive symptoms and impaired cognition, but the mechanisms underlying these relationships are not well understood. It is also not clear whether reducing adiposity reverses these behavioral outcomes. The current study tested the impact of bariatric surgery on depressive symptoms, cognition, and the brain; using a mediation model, we also examined whether the relationship between changes in adiposity after the surgery and those in regional thickness of the cerebral cortex are mediated by changes in low-grade inflammation (as indexed by C-reactive protein; CRP). Methods: A total of 18 bariatric patients completed 3 visits, including one baseline before the surgery and two post-surgery measurements acquired at 6- and 12-months post-surgery. Each visit consisted of a collection of fasting blood sample, magnetic resonance imaging of the brain and abdomen, and assessment of depressive symptoms and cognition. Results: After surgery, we observed reductions of both visceral fat (p< 0.001) and subcutaneous fat (p< 0.001), less depressive symptoms (p< 0.001), improved verbal reasoning (p< 0.001), and reduced CRP (p< 0.001). Mediation analyses revealed that the relationships between the surgery-related changes in visceral fat and cortical thickness in depression-related regions are mediated by changes in CRP (ab=-.027, SE=.012, 95% CI [-.054, -,006]). Conclusion: These findings suggest that some of the beneficial effects of bariatric surgery on brain function and structure are due to a reduction of adiposity-related low-grade systemic inflammation.


Assuntos
Cirurgia Bariátrica , Depressão , Humanos , Depressão/etiologia , Inflamação/complicações , Encéfalo/diagnóstico por imagem , Obesidade/complicações , Obesidade/cirurgia , Cirurgia Bariátrica/métodos , Cognição
7.
Sci Rep ; 13(1): 9109, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277458

RESUMO

We recently devised continuous "sex-scores" that sum up multiple quantitative traits, weighted by their respective sex-difference effect sizes, as an approach to estimating polyphenotypic "maleness/femaleness" within each binary sex. To identify the genetic architecture underlying these sex-scores, we conducted sex-specific genome-wide association studies (GWASs) in the UK Biobank cohort (females: n = 161,906; males: n = 141,980). As a control, we also conducted GWASs of sex-specific "sum-scores", simply aggregating the same traits, without weighting by sex differences. Among GWAS-identified genes, while sum-score genes were enriched for genes differentially expressed in the liver in both sexes, sex-score genes were enriched for genes differentially expressed in the cervix and across brain tissues, particularly for females. We then considered single nucleotide polymorphisms with significantly different effects (sdSNPs) between the sexes for sex-scores and sum-scores, mapping to male-dominant and female-dominant genes. Here, we identified brain-related enrichment for sex-scores, especially for male-dominant genes; these findings were present but weaker for sum-scores. Genetic correlation analyses of sex-biased diseases indicated that both sex-scores and sum-scores were associated with cardiometabolic, immune, and psychiatric disorders.


Assuntos
Doenças Cardiovasculares , Transtornos Mentais , Humanos , Masculino , Feminino , Estudo de Associação Genômica Ampla , Bancos de Espécimes Biológicos , Reino Unido , Polimorfismo de Nucleotídeo Único
8.
Dev Cogn Neurosci ; 60: 101232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963244

RESUMO

Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.


Assuntos
Aptidão , Inteligência , Humanos , Masculino , Adolescente , Feminino , Inteligência/fisiologia , Estudos Transversais , Cognição/fisiologia , Córtex Cerebral , Imageamento por Ressonância Magnética , Plasticidade Neuronal/genética
9.
Front Endocrinol (Lausanne) ; 14: 1018779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875483

RESUMO

Introduction: Myostatin is a member of the transforming growth factor ß superfamily, and is mainly secreted from skeletal muscle. Animal studies have demonstrated that deficiency in myostatin promotes muscle growth and protects against insulin resistance. In humans, gestational diabetes mellitus (GDM) affects fetal insulin sensitivity. Females are more insulin resistant and weigh less than males at birth. We sought to assess whether cord blood myostatin concentrations vary by GDM and fetal sex, and the associations with fetal growth factors. Methods: In a study of 44 GDM and 66 euglycemic mother-newborn dyads, myostatin, insulin, proinsulin, insulin-like growth factor (IGF)-1, IGF-2 and testosterone were measured in cord blood samples. Results: Cord blood myostatin concentrations were similar in GDM vs. euglycemic pregnancies (mean ± SD: 5.5 ± 1.4 vs. 5.8 ± 1.4 ng/mL, P=0.28), and were higher in males vs. females (6.1 ± 1.6 vs. 5.3 ± 1.0 ng/mL, P=0.006). Adjusting for gestational age, myostatin was negatively correlated with IGF-2 (r=-0.23, P=0.02), but not correlated with IGF-1 (P=0.60) or birth weight (P=0.23). Myostatin was strongly correlated with testosterone in males (r=0.56, P<0.001), but not in females (r=-0.08, P=0.58) (test for difference in r, P<0.001). Testosterone concentrations were higher in males vs. females (9.5 ± 6.4 vs. 7.1 ± 4.0 nmol/L, P=0.017), and could explain 30.0% (P=0.039) of sex differences in myostatin concentrations. Discussion: The study is the first to demonstrate that GDM does not impact cord blood myostatin concentration, but fetal sex does. The higher myostatin concentrations in males appear to be partly mediated by higher testosterone concentrations. These findings shed novel insight on developmental sex differences in insulin sensitivity regulation relevant molecules.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Animais , Recém-Nascido , Humanos , Gravidez , Feminino , Masculino , Fator de Crescimento Insulin-Like II , Miostatina , Sangue Fetal , Insulina , Testosterona
10.
J Child Psychol Psychiatry ; 64(3): 408-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162806

RESUMO

BACKGROUND: Specific pathways of intergenerational transmission of behavioral traits remain unclear. Here, we aim to investigate how parental genetics influence offspring cognition, educational attainment, and psychopathology in youth. METHODS: Participants for the discovery sample were 2,189 offspring (aged 6-14 years), 1898 mothers and 1,017 fathers who underwent genotyping, psychiatric, and cognitive assessments. We calculated polygenic scores (PGS) for cognition, educational attainment, attention-deficit hyperactivity disorder (ADHD), and schizophrenia for the trios. Phenotypes studied included educational and cognitive measures, ADHD and psychotic symptoms. We used a stepwise approach and multiple mediation models to analyze the effect of parental PGS on offspring traits via offspring PGS and parental phenotype. Significant results were replicated in a sample of 1,029 adolescents, 363 mothers, and 307 fathers. RESULTS: Maternal and paternal PGS for cognition influenced offspring general intelligence and executive function via offspring PGS (genetic pathway) and parental education (phenotypic pathway). Similar results were found for parental PGS for educational attainment and offspring reading and writing skills. These pathways fully explained associations between parental PGS and offspring phenotypes, without residual direct association. Associations with maternal, but not paternal, PGS were replicated. No associations were found between parental PGS for psychopathology and offspring specific symptoms. CONCLUSIONS: Our findings indicate that parental genetics influences offspring cognition and educational attainment by genetic and phenotypic pathways, suggesting the expression of parental phenotypes partially explain the association between parental genetic risk and offspring outcomes. Multiple mediations might represent an effective approach to disentangle distinct pathways for intergenerational transmission of behavioral traits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Pais , Feminino , Humanos , Cognição , Escolaridade , Mães , Transtorno do Deficit de Atenção com Hiperatividade/genética , Fenótipo
11.
Am J Clin Nutr ; 116(4): 1038-1048, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35977396

RESUMO

BACKGROUND: Mechanisms responsible for associations between intake of mother's milk in very-low-birth-weight (VLBW, <1500 g) infants and later neurodevelopment are poorly understood. It is proposed that early nutrition may affect neurodevelopmental pathways by altering gene expression through epigenetic modification. Variation in DNA methylation (DNAm) at cytosine-guanine dinucleotides (CpGs) is a commonly studied epigenetic modification. OBJECTIVES: We aimed to assess whether early mother's milk intake by VLBW infants is associated with variations in DNAm at 5.5 y, and whether these variations correlate with neurodevelopmental phenotypes. METHODS: This cohort study was a 5.5-y follow-up (2016-2018) of VLBW infants born in Ontario, Canada who participated in the Donor Milk for Improved Neurodevelopmental Outcomes trial. We performed an epigenome-wide association study (EWAS) to test whether percentage mother's milk (not including supplemental donor milk) during hospitalization was associated with DNAm in buccal cells during early childhood (n = 143; mean ± SD age: 5.7 ± 0.2 y; birth weight: 1008 ± 517 g). DNAm was assessed with the Illumina Infinium MethylationEPIC array at 814,583 CpGs. In secondary analyses, we tested associations between top-ranked CpGs and measures of early childhood neurodevelopment, e.g., total surface area of the cerebral cortex (n = 41, MRI) and Full-Scale IQ (n = 133, Wechsler Preschool and Primary Scale of Intelligence-IV). RESULTS: EWAS analysis demonstrated percentage mother's milk intake by VLBW infants during hospitalization was associated with DNAm at 2 CpGs, cg03744440 [myosin XVB (MYO15B)] and cg00851389 [metallothionein 1A (MT1A)], at 5.5 y (P < 9E-08). Gene set enrichment analysis indicated that top-ranked CpGs (P < 0.001) were annotated to genes enriched in neurodevelopmental biological processes. Corroborating these findings, DNAm at several top identified CpGs from the EWAS was associated with cortical surface area and IQ at 5.5 y (P < 0.05). CONCLUSIONS: In-hospital percentage mother's milk intake by VLBW infants was associated with variations in DNAm of neurodevelopmental genes at 5.5 y; some of these DNAm variations are associated with brain structure and IQ.This trial was registered at isrctn.com as ISRCTN35317141 and at clinicaltrials.gov as NCT02759809.


Assuntos
Metilação de DNA , Mães , Pré-Escolar , Estudos de Coortes , Citosina , Feminino , Guanina , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Metalotioneína , Leite Humano , Mucosa Bucal , Miosinas , Ontário
12.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955925

RESUMO

Obesity is a major risk factor of Alzheimer's disease and related dementias. The principal feature of dementia is a loss of neurons and brain atrophy. The mechanistic links between obesity and the neurodegenerative processes of dementias are not fully understood, but recent research suggests that obesity-related systemic inflammation and subsequent neuroinflammation may be involved. Adipose tissues release multiple proinflammatory molecules (fatty acids and cytokines) that impact blood and vessel cells, inducing low-grade systemic inflammation that can transition to tissues, including the brain. Inflammation in the brain-neuroinflammation-is one of key elements of the pathobiology of neurodegenerative disorders; it is characterized by the activation of microglia, the resident immune cells in the brain, and by the structural and functional changes of other cells forming the brain parenchyma, including neurons. Such cellular changes have been shown in animal models with direct methods, such as confocal microscopy. In humans, cellular changes are less tangible, as only indirect methods such as magnetic resonance (MR) imaging are usually used. In these studies, obesity and low-grade systemic inflammation have been associated with lower volumes of the cerebral gray matter, cortex, and hippocampus, as well as altered tissue MR properties (suggesting microstructural variations in cellular and molecular composition). How these structural variations in the human brain observed using MR imaging relate to the cellular variations in the animal brain seen with microscopy is not well understood. This review describes the current understanding of neuroinflammation in the context of obesity-induced systemic inflammation, and it highlights need for the bridge between animal microscopy and human MR imaging studies.


Assuntos
Doença de Alzheimer , Microscopia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Inflamação/diagnóstico por imagem , Inflamação/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Microglia/patologia , Doenças Neuroinflamatórias , Obesidade/complicações , Obesidade/diagnóstico por imagem , Obesidade/patologia
13.
J Clin Endocrinol Metab ; 107(10): e4187-e4196, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35965384

RESUMO

CONTEXT: Sex hormone-binding globulin (SHBG) is associated with levels of total testosterone (total-T), and both total-T and SHBG are associated with obesity. OBJECTIVE: We aimed to clarify the nature of the relationship between testosterone and SHBG and improve our understanding of their relationships with obesity. We hypothesize that the hypothalamic-pituitary-gonadal axis contributes to the homeostasis of testosterone by increasing the production of gonadal testosterone through a feedback mechanism that might operate differently at different pubertal stages. METHODS: We investigated the dynamics of the relationship between SHBG, total-T, and body mass index (BMI) throughout puberty (from age 9 to 17) using longitudinal data obtained in 507 males. The directionality of this relationship was explored using polygenic scores of SHBG and total-T, and a two-sample Mendelian Randomization (MR) in male adults. RESULTS: Consistent with our hypothesis, we found positive relationships between SHBG and total-T at age 15 and 17 but either no relationship or a negative relationship during the earlier time points. Such shifting relationships explained age-related changes in the association between total-T and BMI. Polygenic scores of SHBG and total-T in mediation analyses and the two-sample MR in male adults suggested an effect of SHBG on total-T but also a somewhat weaker effect of total-T on SHBG. Two-sample MR also showed an effect of BMI on SHBG but no effect of SHBG on BMI. CONCLUSION: These results clarify the nature of the relationship between testosterone and SHBG during puberty and adulthood and shed new light on their possible relationship with obesity.


Assuntos
Globulina de Ligação a Hormônio Sexual , Testosterona , Adolescente , Adulto , Índice de Massa Corporal , Criança , Humanos , Masculino , Obesidade/genética , Puberdade , Globulina de Ligação a Hormônio Sexual/análise
15.
Commun Med (Lond) ; 2: 81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789567

RESUMO

Background: Visceral fat (VF) increases risk for cardiometabolic disease (CMD), the leading cause of morbidity and mortality. Variations in the circulating metabolome predict the risk for CMD but whether or not this is related to VF is unknown. Further, CMD is now also present in adolescents, and the relationships between VF, circulating metabolome, and CMD may vary between adolescents and adults. Methods: With an aim to add understanding to the metabolic variations in visceral obesity, we tested associations between VF, measured directly with magnetic resonance imaging, and 228 fasting serum metabolomic measures, quantified with nuclear magnetic resonance spectroscopy, in 507 adults (36-65 years) and 938 adolescents (12-18 years). We further utilized data from published studies to estimate similarities between VF and CMD-associated metabolic profiles. Results: Here we show that VF, independently of body mass index (BMI) or subcutaneous fat, is associated with triglyceride-rich lipoproteins, fatty acids, and inflammation in both adults and adolescents, whereas the associations with amino acids, glucose, and intermediary metabolites are significant in adults only. BMI-adjusted metabolomic profile of VF resembles those predicting type 2 diabetes in adults (R 2 = 0.88) and adolescents (R 2 = 0.70), and myocardial infarction in adults (R 2 = 0.59) and adolescents (R 2 = 0.40); this is not the case for ischemic stroke (adults: R 2 = 0.05, adolescents: R 2 = 0.08). Conclusions: Visceral adiposity is associated with metabolomic profiles predictive of type 2 diabetes and myocardial infarction even in normal-weight individuals and already in adolescence. Targeting factors contributing to the emergence and maintenance of these profiles might ameliorate their cumulative effects on cardiometabolic health.

16.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050683

RESUMO

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Idoso , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
17.
Nat Genet ; 54(1): 18-29, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980917

RESUMO

We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans and 3,195 South Asians. We identify 11,165,559 SNP-CpG associations (methylation quantitative trait loci (meQTL), P < 10-14), including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared chromatin state, High-throuhgput chromosome conformation interaction, and association with gene expression, metabolic variation and clinical traits. We use molecular interaction and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For rs6511961 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) validates zinc finger protein (ZNF)333 as the likely trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including rs174548 in FADS1, with the strongest effect in CD8+ T cells, thus linking fatty acid metabolism with immune dysregulation and asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.


Assuntos
Metilação de DNA/genética , Variação Genética , Artrite Reumatoide/genética , Ásia , Pressão Sanguínea/genética , Índice de Massa Corporal , Linfócitos T CD8-Positivos/metabolismo , Ilhas de CpG , Replicação do DNA , Europa (Continente) , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Int J Obes (Lond) ; 46(1): 235-237, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480103

RESUMO

The genetic architecture of testosterone is highly distinct between sexes. Moreover, obesity is associated with higher testosterone in females but lower testosterone in males. Here, we ask whether male-specific testosterone variants are associated with a male pattern of obesity and type 2 diabetes (T2D) in females, and vice versa. In the UK Biobank, we conducted sex-specific genome-wide association studies and computed polygenic scores for total (PGSTT) and bioavailable testosterone (PGSBT). We tested sex-congruent and sex-incongruent associations between sex-specific PGSTs and metabolic traits, as well as T2D diagnosis. Female-specific PGSBT was associated with an elevated cardiometabolic risk and probability of T2D, in both sexes. Male-specific PGSTT was associated with traits conferring a lower cardiometabolic risk and probability of T2D, in both sexes. We demonstrate the value in considering polygenic testosterone as sex-related continuous traits, in each sex.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/complicações , Diferenciação Sexual/genética , Testosterona/metabolismo , Adulto , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , Síndrome Metabólica/classificação , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Testosterona/análise
19.
Front Psychiatry ; 12: 645746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959052

RESUMO

Genetic markers of the endocannabinoid system have been linked to a variety of addiction-related behaviors that extend beyond cannabis use. In the current study we investigate the relationship between endocannabinoid (eCB) genetic markers and alcohol use disorder (AUD) in European adolescents (14-18 years old) followed in the IMAGEN study (n = 2,051) and explore replication in a cohort of North American adolescents from Canadian Saguenay Youth Study (SYS) (n = 772). Case-control status is represented by a score of more than 7 on the Alcohol Use Disorder Identification Test (AUDIT). First a set-based test method was used to examine if a relationship between the eCB system and AUDIT case/control status exists at the gene level. Using only SNPs that are both independent and significantly associated to case-control status, we perform Fisher's exact test to determine SNP level odds ratios in relation to case-control status and then perform logistic regressions as post-hoc analysis, while considering various covariates. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the most robust SNP×SNP interaction of the five eCB genes with positive AUDIT screen. While no gene-sets were significantly associated to AUDIT scores after correction for multiple tests, in the case/control analysis, 7 SNPs were significantly associated with AUDIT scores of > 7 (p < 0.05; OR<1). Two SNPs remain significant after correction by false discovery rate (FDR): rs9343525 in CNR1 (pcorrected =0.042, OR = 0.73) and rs507961 in MGLL (pcorrected = 0.043, OR = 0.78). Logistic regression showed that both rs9353525 (CNR1) and rs507961 (MGLL) remained significantly associated with positive AUDIT screens (p < 0.01; OR < 1) after correction for multiple covariables and interaction of covariable × SNP. This result was not replicated in the SYS cohort. The GMDR model revealed a significant three-SNP interaction (p = 0.006) involving rs484061 (MGLL), rs4963307 (DAGLA), and rs7766029 (CNR1) predicted case-control status, after correcting for multiple covariables in the IMAGEN sample. A binomial logistic regression of the combination of these three SNPs by phenotype in the SYS cohort showed a result in the same direction as seen in the IMAGEN cohort (BETA = 0.501, p = 0.06). While preliminary, the present study suggests that the eCB system may play a role in the development of AUD in adolescents.

20.
Nutrients ; 13(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923230

RESUMO

Maternal choline intakes are below recommendations, potentially impairing the child's later-life metabolic health. This study aims to elucidate the interaction between the choline content of the gestational diet (GD) and fat content of the post-weaning diet (PWD) on metabolic phenotype of male Wistar rats. Pregnant Wistar rats were fed a standard rodent diet (AIN-93G) with either recommended choline (RC, 1 g/kg diet choline bitartrate) or high choline (HC, 2.5-fold). Male pups were weaned to either a normal (16%) fat (NF) or a high (45%) fat (HF) diet for 17 weeks. Body weight, visceral adiposity, food intake, energy expenditure, plasma hormones, triglycerides, and hepatic fatty acids were measured. HC-HF offspring had 7% lower body weight but not food intake, and lower adiposity, plasma triglycerides, and insulin resistance compared to RC-HF. They also had increased hepatic n-3 fatty acids and a reduced n-6/n-3 and C 18:1 n-9/C18:0 ratios. In contrast, HC-NF offspring had 6-8% higher cumulative food intake and body weight, as well as increased leptin and elevated hepatic C16:1 n-7/C16:0 ratio compared to RC-NF. Therefore, gestational choline supplementation associated with improved long-term regulation of several biomarkers of the metabolic syndrome in male Wistar rat offspring fed a HF, but not a NF, PWD.


Assuntos
Colina/farmacologia , Dieta Hiperlipídica , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/prevenção & controle , Animais , Colina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...